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1 Objectives 

The D3.1 is part of the development of catalyst coated diaphragms do be used in 
electrolysers and the aim of D3.1 is to showcase the work that has been done between 
M1-M12 in T3.1 of WP3 “Catalyst coated membrane development”.  

The goal was to develop catalyst coated diaphragms (CCDs) that can sufficiently reduce 
the cell potential and serve as a benchmark for future catalyst coated diaphragms with 
novel exsolution catalysts. 

2 Methodology and Work done 

This task was approached by a two-fold idea: 

1. Developing a CCD that specifically targets the hydrogen evolution reaction (HER) 

using conventional catalysts  

2. If the first point is proven to be successful, the CCD principle will be applied to both 

the HER and the oxygen evolution reaction (OER) simultaneously. 

The work carried out under both ideas is further described below. 

2.1 CCD development for HER  

For the enhancement of the HER three prominent catalysts that are commonly employed 
for water electrolysis were chosen: 20 wt.% Pt/C (20% platinum on 80% graphitized carbon 
support), nanoparticulate Pt (>200 nm), and Raney Ni (porous Ni). Pt is often used as a 
reference catalyst usually viewed as being the best performing HER catalyst, even under 
HER conditions. Raney Ni is a typical high surface area HER catalyst employed for alkaline 
water electrolysis. As a binder PVA was chosen as it is a cheap polymer which is widely 
available and biodegradable. A slurry was made from solvent, PVA, and catalytic particles, 
which was then either sprayed or stencil coated onto the Zirfon UTP 500 diaphragm. The 
electrical contact between the current deliverer and collector is ensured via Ni porous 
transport layers (PTL), see Figure 1.  

 

Figure 1. Schematic representation of the CCD, PTL, electrode assembly within the flow cell. 
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At high current densities we see a reduction in the cell potential by 200 mV using Raney 
Ni and 100 mV using Pt based catalysts (see Figure 2). This reduction was achieved by 
only improving the HER. Interestingly, we observed that the Pt performed decently at low 
current densities, however, not well at high current densities. In comparison Raney Ni 
performed great throughout the entire current density range. 

 

Figure 2. Comparison of cell potential curves recorded for benchmark with Ni felt and Zirfon UTP 500, a CCD made with 
nanoparticular Pt and a CCD made with Raney Ni in 27 wt.% KOH at around 75 °C. For the anode a Ni felt was used as 
well. 

This trend could be well observed in the internal resistance corrected polarization curves, 
which showed a change in Tafel slope between low and high current densities for Pt based 
catalysts at around 30 mA/cm2. This trend was observed through multiple truly independent 
samples as well as at different temperatures (see Figure 3). 

 

Figure 3. Polarization curves showcasing the total internal resistance corrected cell potential of benchmark Ni felt and 
Zirfon UTP 500 and CCDs coated with either Pt/C or nanoparticular Pt applied for the HER in 27 wt.% KOH with 50 μM 

Fe. 
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Figure 4. Polarization curves showcasing the total internal resistance corrected cell potential of benchmark Ni felt and 

Zirfon UTP 500 and CCDs coated with varying loadings of Raney Ni applied for the HER in 27 wt.% KOH with 50 μM Fe. 

In contrast, such a trend could not be observed for CCDs prepared with Raney Ni, which 
showed a consistent decrease in potential with increasing Raney Ni catalyst loading (see 
Figure 4). In our view this is connected to the decrease in capacitance for Pt with increasing 
current density, which was not observed for Ni (see Figure 5). We can speculate that in 
alkaline conditions the H-Pt binding energy is higher than under acidic conditions. This 
procedurally leads to the saturation of Pt surface sites with H, which will not form H2 due 
to the high binding energies. 
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Figure 5. Capacitances for Pt CCDs determined via the Brug equation Error! Reference source not found. of 
benchmark Ni felt and Zirfon UTP 500 and CCDs coated with nanoparticular Pt or Raney Ni applied for the HER in 27 

wt.% KOH with 50 μM Fe. 

Long-term tests were performed over the course of 60 h, where we observed that the CCDs 
were not stable over long periods of time. This is connected to the PVA dissolving over 
time at high temperatures into the electrolyte. Especially, the Pt based CCDs showed a 
fast delamination, while Raney Ni CCDs reached a stable equilibrium after some hours 
(see Figure 6). The delamination occurred from the Zirfon diaphragm towards the PTL, 
which was observed optically and in SEM (see Figure 7 and Figure 8). The delamination 
was observed for both Raney Ni and Pt based CCDs, however, Pt/C showed a higher 
resistance towards delamination than purely metal based catalysts.  

While the stability was not optimized yet, due to time constraints, we sought to apply the 
CCD concept to both HER and OER, to see what kind of electrochemical performances 
were possible.  

 

Figure 6. Stability chronopotentiometry measurement at ~90 mA/cm2 of a Ni felt and Zirfon UTP 500, a CCD made from 
Pt/C with PVA on Zirfon UTP 500 (2.0 mg/cm2), a CCD made from nanoparticular Pt with PVA on Zirfon UTP 500 (0.4 
mg/cm2) and a CCD made from Raney Ni with PVA on Zirfon UTP 500 (18.3 mg/cm2) up to 85 h in 27 wt.% KOH with 50 
μM Fe at 85 °C. 
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Figure 7. Optical image of a 11.5 mg/cm2 Raney Ni CCD pre- and post-electrolysis. The Raney Ni in the contact area 
(white) was delaminated onto the PTL after disassembly of the cell post electrolysis. 

 

Figure 8. a) Optical image and b) SEM image of a Raney Ni CCD (11.2 mg/cm2) post electrolysis as well as c) optical 
image and d) SEM image of the PTL post electrolysis used in the same experiment on the cathodic side. 

2.2 CCD development for HER and OER 

As the CCDs for HER showed good performance, we coated Zirfon UTP 500 and 220 on 
both sides to obtain double coated CCDs. For the HER CCD Raney Ni was used as it 
showed the best performance in our previous experiment and for the OER we used FeNi 
LDH, which is regarded as one of the best and cheapest OER catalysts. As a coating 
procedure we applied spray and stencil coating, with a stronger focus on stencil coating, 
as it is quicker and easier to scale to larger sizes than spray coating. 
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Figure 9. Polarization curves obtained for benchmark Ni felts and Zirfon UTP 500, compared to catalyst coated 
diaphragms (Zirfon UTP 220 and 500) at varying temperatures in 30 wt.% KOH. 50 μM Fe concentration was used in the 

stencil coated CCD experiments, while a 500 μM Fe concentration was used for the spray coated CCD. 

Using this approach, we achieved at 21.5 °C for Zirfon UTP 500 a reduction of 300 mV and 
at 76.0 °C a reduction of 230 mV against the reference without CCDs. We additionally 
performed experiments with double coated on Zirfon UTP 220, which resulted in a total 
reduction of 400 mV and 330 mV at 21.5 and 76.0 °C, respectively, due to an additional 
reduction in ohmic resistance. Both spray and stencil coated CCDs showed similar 
performance and reduced the cell potential sufficiently to allow for great performances 
even at current densities far above 1 A/cm2. The CCDs also did not lead to an increase in 
ohmic resistance (see Figure 10). 

 

Figure 10. Ohmic area resistances obtained for benchmark Ni felts and Zirfon UTP 500, compared to catalyst coated 
diaphragms (Zirfon UTP 220 and 500) at varying temperatures in 30 wt.% KOH. 50 μM Fe concentration was used in the 
stencil coated CCD experiments, while a 500 μM Fe concentration was used for the spray coated CCD. 

For the double coated CCDs long-term testing was performed as well (see Figure 11). At 
22 °C no degradation can be observed. However, at 76 °C we observed degradation for 
the spray coated CCD, however, not for the stencil coated CCD. As with the previous study, 
PVA has proven to be not the most stable binder material as it dissolves over time. 
However, other promising binder polymers are being investigated as part of the 
EXSOTHyC project, which can very well prove to be more stable and allow for long-term 
operation of CCDs. 
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With these studies we also want to highlight that we were able to reduce the cell potential 
by at least 300 mV, as was promised in the work package goals. 

 

Figure 11. Long-term stability test of the spray and stencil coated CCDs (FeNi LDH // Raney Ni) at 20°C at 700 mA/cm2 
and at 85 °C at 440 mA/cm2 in 30 wt.% KOH. 50 μM Fe concentration was used in the stencil coated CCD experiments, 
while a 500 μM Fe concentration was used for the spray coated CCD. 

3 Deviations 

There are no significant deviations from the initial workplan and all the expected result have 
bene achieved. 

4 Conclusions 

Within this work package we successfully made CCDs, which showed great performances, 
especially at high current densities, which are currently not reached in alkaline water 
electrolysis. This shows that high current densities are indeed achievable using alkaline 
water electrolysis, if ohmic and polarization resistances in the cell are addressed 
accordingly. We could also show that simple catalyst, such as Raney Ni or FeNi layered 
double hydroxides that are easy to purchase or synthesize, still show great promise for the 
field of alkaline water electrolysis. 
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Platinum on the other hand has been seen to not work optimally under alkaline conditions, 
showing an improvement around the same as Raney Ni at low current densities and a 
deactivation of the catalyst at higher current densities. As such it can be doubted if the rare 
and expensive metal is suitable for alkaline water electrolysis in general. 

Lastly, the stability of CCDs for long-term applications needs to be improved with a suitable 
polymer binder that can withstand conditions in an electrolyser at currents of > 1 A/cm2 
and 85 °C in 30 wt.% KOH. We expect that such a binder will be found within the project, 
however, the performance with such a binder might not be as great as with PVA. 
Nevertheless, this is necessary as industry demands on catalysts are naturally based on 
long-term operations over thousands of hours. 

Both studies were also published open access and are available for more detailed 
information. 

• https://doi.org/10.1016/j.ijhydene.2024.10.048 

• https://doi.org/10.1149/1945-7111/ada581 
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